The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2015.060612
PDF

Multiple-Published Tables Privacy-Preserving Data Mining: A Survey for Multiple-Published Tables Techniques

Author 1: Abou_el_ela Abdo Hussein
Author 2: Nagy Ramadan Darwish
Author 3: Hesham A. Hefny

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 6, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: With large growth in technology, reduced cost of storage media and networking enabled the organizations to collect very large volume of information from huge sources. Different data mining techniques are applied on such huge data to extract useful and relevant knowledge. The disclosure of sensitive data to unauthorized parties is a critical issue for organizations which could be most critical problem of data mining. So Privacy preserving data mining (PPDM) has become increasingly popular because it solves this problem and allows sharing of privacy sensitive data for analytical purposes. A lot of privacy techniques were developed based on the k-anonymity property. Because of a lot of shortcomings of the k-anonymity model, other privacy models were introduced. Most of these techniques release one table for research public after they applied on original tables. In this paper the researchers introduce techniques which publish more than one table for organizations preserving individual's privacy. One of this is (a, k) – anonymity using lossy-Join which releases two tables for publishing in such a way that the privacy protection for (a, k)-anonymity can be achieved with less distortion, and the other one is Anatomy technique which releases all the quasi-identifier and sensitive values directly in two separate tables, met l-diversity privacy requirements, without any modification in the original table.

Keywords: Data mining; privacy; sensitive attribute; quasi-identifier Anatomy

Abou_el_ela Abdo Hussein, Nagy Ramadan Darwish and Hesham A. Hefny, “Multiple-Published Tables Privacy-Preserving Data Mining: A Survey for Multiple-Published Tables Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 6(6), 2015. http://dx.doi.org/10.14569/IJACSA.2015.060612

@article{Hussein2015,
title = {Multiple-Published Tables Privacy-Preserving Data Mining: A Survey for Multiple-Published Tables Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.060612},
url = {http://dx.doi.org/10.14569/IJACSA.2015.060612},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {6},
author = {Abou_el_ela Abdo Hussein and Nagy Ramadan Darwish and Hesham A. Hefny}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org