The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Graph-based Semi-Supervised Regression and Its Extensions

Author 1: Xinlu Guo
Author 2: Kuniaki Uehara

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2015.060636

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 6, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper we present a graph-based semi-supervised method for solving regression problem. In our method, we first build an adjacent graph on all labeled and unlabeled data, and then incorporate the graph prior with the standard Gaussian process prior to infer the training model and prediction distribution for semi-supervised Gaussian process regression. Additionally, to further boost the learning performance, we employ a feedback algorithm to pick up the helpful prediction of unlabeled data for feeding back and re-training the model iteratively. Furthermore, we extend our semi-supervised method to a clustering regression framework to solve the computational problem of Gaussian process. Experimental results show that our work achieves encouraging results.

Keywords: Semi-supervised learning; Graph-Laplacian; Re-gression; Gaussian Process; Feedback; Clustering

Xinlu Guo and Kuniaki Uehara, “Graph-based Semi-Supervised Regression and Its Extensions” International Journal of Advanced Computer Science and Applications(IJACSA), 6(6), 2015. http://dx.doi.org/10.14569/IJACSA.2015.060636

@article{Guo2015,
title = {Graph-based Semi-Supervised Regression and Its Extensions},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.060636},
url = {http://dx.doi.org/10.14569/IJACSA.2015.060636},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {6},
author = {Xinlu Guo and Kuniaki Uehara}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Hybrid | San Francisco

Computing Conference 2023

13-14 July 2023

  • Hybrid | London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org