The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2015.060917
PDF

An Approach to Improve Classification Accuracy of Leaf Images using Dorsal and Ventral Features

Author 1: Arun Kumar
Author 2: Vinod Patidar
Author 3: Deepak Khazanachi
Author 4: Poonam Saini

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 6 Issue 9, 2015.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This paper proposes to improve the classification accuracy of the leaf images by extracting texture and statistical features by utilizing the presence of striking features on the dorsal and ventral sides of the leaves, which on other types of objects may not be that prominent. The texture features have been extracted from dorsal, ventral and a combination of dorsal-ventral sides of leaf images using Gray level co-occurrence matrix. In addition to this, this work also uses certain general statistical features for discriminating them into various classes. The feature selection work has been performed separately for the dorsal, ventral and combined data sets (for both texture and statistical features) using the most common feature selection algorithms. After selecting the relevant features, the classification has been done using the classification algorithms: K-Nearest Neighbor, J48, Naïve Bayes, Partial Least Square (PLS), Classification and Regression Tree (CART), Classification Tree(CT). The classification accuracy has been calculated and compared to find which side of the leaf image (dorsal or ventral) gives better results with which type of features(texture or statistical). This study reveals that the ventral leaf features can be another alternative in discriminating the leaf images into various classes.

Keywords: Leaf image; Leaf classification; Texture features; Statistical features; Dorsal and ventral sides of leaves; Gray level co-occurrence matrix

Arun Kumar, Vinod Patidar, Deepak Khazanachi and Poonam Saini, “An Approach to Improve Classification Accuracy of Leaf Images using Dorsal and Ventral Features” International Journal of Advanced Computer Science and Applications(IJACSA), 6(9), 2015. http://dx.doi.org/10.14569/IJACSA.2015.060917

@article{Kumar2015,
title = {An Approach to Improve Classification Accuracy of Leaf Images using Dorsal and Ventral Features},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2015.060917},
url = {http://dx.doi.org/10.14569/IJACSA.2015.060917},
year = {2015},
publisher = {The Science and Information Organization},
volume = {6},
number = {9},
author = {Arun Kumar and Vinod Patidar and Deepak Khazanachi and Poonam Saini}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org