The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070133
PDF

Maximally Distant Codes Allocation Using Chemical Reaction Optimization with Enhanced Exploration

Author 1: Taisir Eldos
Author 2: Abdallah Khreishah

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 1, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Error correcting codes, also known as error controlling codes, are sets of codes with redundancy that provides for error detection and correction, for fault tolerant operations like data transmission over noisy channels or data retention using storage media with possible physical defects. The challenge is to find a set of m codes out of 2n available n-bit combinations, such that the aggregate hamming distance among those codewords and/or the minimum distance is maximized. Due to the prohibitively large solution spaces of practically sized problems, greedy algorithms are used to generate quick and dirty solutions. However, modern evolutionary search techniques like genetic algorithms, swarm particles, gravitational search, and others, offer more feasible solutions, yielding near optimal solutions in exchange for some computational time. The Chemical Reaction Optimization (CRO), which is inspired by the molecular reactions towards a minimal energy state, emerged recently as an efficient optimization technique. However, like the other techniques, its internal dynamics are hard to control towards convergence, yielding poor performance in many situations. In this research, we proposed an enhanced exploration strategy to overcome this problem, and compared it with the standard threshold based exploration strategy in solving the maximally distant codes allocation problem. Test results showed that the enhancement provided better performance on most metrics.

Keywords: Evolutionary Algorithms; Chemical Reaction Optimization; Maximally Distant Codes; Binary Knapsack Problem; Fault Tolerance

Taisir Eldos and Abdallah Khreishah, “Maximally Distant Codes Allocation Using Chemical Reaction Optimization with Enhanced Exploration” International Journal of Advanced Computer Science and Applications(IJACSA), 7(1), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070133

@article{Eldos2016,
title = {Maximally Distant Codes Allocation Using Chemical Reaction Optimization with Enhanced Exploration},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070133},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070133},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {1},
author = {Taisir Eldos and Abdallah Khreishah}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org