Future of Information and Communication Conference (FICC) 2025
28-29 April 2025
Publication Links
IJACSA
Special Issues
Future of Information and Communication Conference (FICC)
Computing Conference
Intelligent Systems Conference (IntelliSys)
Future Technologies Conference (FTC)
International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 1, 2016.
Abstract: Recommender systems suggest a list of interesting items to users based on their prior purchase or browsing behaviour on e-commerce platforms. The continuing research in recommender systems have primarily focused on developing algorithms for rating prediction task. However, most e-commerce platforms provide ‘top-k’ list of interesting items for every user. In line with this idea, the paper proposes a novel machine learning algorithm to predict a list of ‘top-k’ items by optimizing the latent factors of users and items with the mapped scores from ratings. The basic idea is to learn latent factors based on the cosine similarity between the users and items latent features which is then used to predict the scores for unseen items for every user. Comprehensive empirical evaluations on publicly available benchmark datasets reveal that the proposed model outperforms the state-of-the-art algorithms in recommending good items to a user.
Bipul Kumar, Pradip Kumar Bala and Abhishek Srivastava, “Cosine Based Latent Factor Model for Precision Oriented Recommendation” International Journal of Advanced Computer Science and Applications(IJACSA), 7(1), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070161
@article{Kumar2016,
title = {Cosine Based Latent Factor Model for Precision Oriented Recommendation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070161},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070161},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {1},
author = {Bipul Kumar and Pradip Kumar Bala and Abhishek Srivastava}
}
Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.