The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070113
PDF

A Novel Adaptive Grey Verhulst Model for Network Security Situation Prediction

Author 1: Yu-Beng Leau
Author 2: Selvakumar Manickam

International Journal of Advanced Computer Science and Applications(ijacsa), Volume 7 Issue 1, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Recently, researchers have shown an increased interest in predicting the situation of incoming security situation for organization’s network. Many prediction models have been produced for this purpose, but many of these models have various limitations in practical applications. In addition, literature shows that far too little attention has been paid in utilizing the grey Verhulst model predicting network security situation although it has demonstrated satisfactory results in other fields. By considering the nature of intrusion attacks and shortcomings of traditional grey Verhulst model, this paper puts forward an adaptive grey Verhust model with adjustable generation sequence to improve the prediction accuracy. The proposed model employs the combination methods of Trapezoidal rule and Simpson’s 1/3rd rule to obtain the background value in grey differential equation which will directly influence the forecast result. In order to verify the performance of the proposed model, benchmarked datasets, DARPA 1999 and 2000 have been used to highlight the efficacy of the proposed model. The results show that the proposed adaptive grey Verhulst surpassed GM(1,1) and traditional grey Verhulst in forecasting incoming security situation in a network.

Keywords: Grey Theory; Network Security Situation Prediction; Adaptive Grey Verhulst Model; Adjustable Generation Sequence; Prediction Accuracy

Yu-Beng Leau and Selvakumar Manickam, “A Novel Adaptive Grey Verhulst Model for Network Security Situation Prediction” International Journal of Advanced Computer Science and Applications(ijacsa), 7(1), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070113

@article{Leau2016,
title = {A Novel Adaptive Grey Verhulst Model for Network Security Situation Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070113},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070113},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {1},
author = {Yu-Beng Leau and Selvakumar Manickam}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org