The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070194
PDF

Risk Propagation Analysis and Visualization using Percolation Theory

Author 1: Sandra Konig
Author 2: Stefan Rass
Author 3: Stefan Schauer
Author 4: Alexander Beck

International Journal of Advanced Computer Science and Applications(ijacsa), Volume 7 Issue 1, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: This article presents a percolation-based approach for the analysis of risk propagation, using malware spreading as a showcase example. Conventional risk management is often driven by human (subjective) assessment of how one risk influences the other, respectively, how security incidents can affect subsequent problems in interconnected (sub)systems of an infrastructure. Using percolation theory, a well-established methodology in the fields of epidemiology and disease spreading, a simple simulation-based method is described to assess risk propagation system-atically. This simulation is formally analyzed using percolation theory, to obtain closed form criteria that help predicting a pandemic incident propagation (or a propagation with average-case bounded implications). The method is designed as a security decision support tool, e.g., to be used in security operation centers. For that matter, a flexible visualization technique is devised, which is naturally induced by the percolation model and the simulation algorithm that derives from it. The main output of the model is a graphical visualization of the infrastructure (physical or logical topology). This representation uses color codes to indicate the likelihood of problems to arise from a security incident that initially occurs at a given point in the system. Large likelihoods for problems thus indicate “hotspots”, where additional action should be taken.

Keywords: security operation center; malware infection; perco-lation; BYOD; risk propagation; visualization

Sandra Konig, Stefan Rass, Stefan Schauer and Alexander Beck, “Risk Propagation Analysis and Visualization using Percolation Theory” International Journal of Advanced Computer Science and Applications(ijacsa), 7(1), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070194

@article{Konig2016,
title = {Risk Propagation Analysis and Visualization using Percolation Theory},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070194},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070194},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {1},
author = {Sandra Konig and Stefan Rass and Stefan Schauer and Alexander Beck}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org