The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.071147
PDF

Polynomial based Channel Estimation Technique with Sliding Window for M-QAM Systems

Author 1: O. O. Ogundile
Author 2: M. O. Oloyede
Author 3: F. A. Aina
Author 4: S. S. Oyewobi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 11, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Pilot Symbol Assisted Modulation (PSAM) channel estimation techniques over Rayleigh fading channels have been analysed in recent years. Fluctuations in the Rayleigh fading channel gain degrades the performance of any modulation scheme. This paper develops and analyses a PSAM Polynomial interpolation technique based on Least Square (LS ) approxi-mations to estimate the Channel State Information (CSI) for M-ary Quadrature Amplitude Modulation (M-QAM) over flat Rayleigh fading channels. A Sliding window approach with pilot symbol adjustment is employed in order to minimize the computational time complexity of the estimation technique. The channel estimation performance, and its computational delay and time complexity is verified for di?erent Doppler frequen-cies ( fd), frame lengths (L), and Polynomial orders (P-orders). Simulation results show that the Cubic Polynomial interpolation gives superior Symbol Error Rate (SER) performance than the Quadratic Polynomial interpolation and higher P-orders, and the performance of the Polynomial estimation techniques degrade with increase in the P-orders.

Keywords: Channel estimation; Doppler frequency; frame length; interpolation; polynomial order

O. O. Ogundile, M. O. Oloyede, F. A. Aina and S. S. Oyewobi, “Polynomial based Channel Estimation Technique with Sliding Window for M-QAM Systems” International Journal of Advanced Computer Science and Applications(IJACSA), 7(11), 2016. http://dx.doi.org/10.14569/IJACSA.2016.071147

@article{Ogundile2016,
title = {Polynomial based Channel Estimation Technique with Sliding Window for M-QAM Systems},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.071147},
url = {http://dx.doi.org/10.14569/IJACSA.2016.071147},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {11},
author = {O. O. Ogundile and M. O. Oloyede and F. A. Aina and S. S. Oyewobi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org