The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.071105
PDF

Japanese Dairy Cattle Productivity Analysis using Bayesian Network Model (BNM)

Author 1: Iqbal Ahmed
Author 2: Kenji Endo
Author 3: Osamu Fukuda
Author 4: Kohei Arai
Author 5: Hiroshi Okumura
Author 6: Kenichi Yamashita

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 11, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Japanese Dairy Cattle Productivity Analysis is carried out based on Bayesian Network Model (BNM). Through the experiment with 280 Japanese anestrus Holstein dairy cow, it is found that the estimation for finding out the presence of estrous cycle using BNM represents almost 55% accuracy while considering all samples. On the contrary, almost 73% accurate estimation could be achieved while using suspended likelihood in sample datasets. Moreover, while the proposed BNM model have more confidence then the estimation accuracy is lies in between 93 to 100%. In addition, this research also reveals the optimum factors to find out the presence of estrous cycle among the 270 individual dairy cows. The objective estimation methods using BNM definitely lead a unique idea to overcome the error of subjective estimation of having estrous cycle among these Japanese dairy cattle.

Keywords: Bayesian Network Model; BCS; Postpartum Interval; Parity Number; Estrous Cycle; Cattle Productivity

Iqbal Ahmed, Kenji Endo, Osamu Fukuda, Kohei Arai, Hiroshi Okumura and Kenichi Yamashita, “Japanese Dairy Cattle Productivity Analysis using Bayesian Network Model (BNM)” International Journal of Advanced Computer Science and Applications(IJACSA), 7(11), 2016. http://dx.doi.org/10.14569/IJACSA.2016.071105

@article{Ahmed2016,
title = {Japanese Dairy Cattle Productivity Analysis using Bayesian Network Model (BNM)},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.071105},
url = {http://dx.doi.org/10.14569/IJACSA.2016.071105},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {11},
author = {Iqbal Ahmed and Kenji Endo and Osamu Fukuda and Kohei Arai and Hiroshi Okumura and Kenichi Yamashita}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org