The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.071152
PDF

Modified Random Forest Approach for Resource Allocation in 5G Network

Author 1: Parnika De
Author 2: Shailendra Singh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 11, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: According to annual visual network index (VNI) report by the year 2020, 4G will reach its maturity and incremental approach will not meet demand. Only way is to switch to newer generation of mobile technology called as 5G. Resource allocation is critical problem that impact 5G Network operation critically. Timely and accurate assessment of underutilized bandwidth to primary user is necessary in order to utilize it efficiently for increasing network efficiency. This paper presents a decision making system at Fusion center using modified Random Forest. Modified Random Forest is first trained using Database accumulated by measuring different network parameters and can take decision on allocation of resources. The Random Forest is retrained after fixed time interval, considering dynamic nature of network. We also test its performance in comparison with existing AND/OR logic decision logic at Fusion Center

Keywords: 5G; Cognitive Radio; Clustering; Fusion Centre; Random Forest

Parnika De and Shailendra Singh, “Modified Random Forest Approach for Resource Allocation in 5G Network” International Journal of Advanced Computer Science and Applications(IJACSA), 7(11), 2016. http://dx.doi.org/10.14569/IJACSA.2016.071152

@article{De2016,
title = {Modified Random Forest Approach for Resource Allocation in 5G Network},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.071152},
url = {http://dx.doi.org/10.14569/IJACSA.2016.071152},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {11},
author = {Parnika De and Shailendra Singh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org