The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.071157
PDF

Mood Extraction Using Facial Features to Improve Learning Curves of Students in E-Learning Systems

Author 1: Abdulkareem Al-Alwani

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 11, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Students’ interest and involvement during class lectures is imperative for grasping concepts and significantly improves academic performance of the students. Direct supervision of lectures by instructors is the main reason behind student attentiveness in class. Still, there is sufficient percentage of students who even under direct supervision tend to lose concentration. Considering the e-learning environment, this problem is aggravated due to absence of any human supervision. This calls for an approach to assess and identify lapses of attention by a student in an e-learning session. This study is carried out to improve student’s involvement in e-learning platforms by using their facial feature to extract mood patterns. Analyzing themoods based on emotional states of a student during an online lecture can provide interesting results which can be readily used to improvethe efficacy of content delivery in an e-learning platform. A survey is carried out among instructors involved in e-learning to identify most probable facial features that represent the facial expressions or mood patterns of a student. A neural network approach is used to train the system using facial feature sets to predict specific facial expressions. Moreover, a data association based algorithm specifically for extracting information on emotional states by correlating multiple sets of facial features is also proposed. This framework showed promising results in inciting student’s interest by varying the content being delivered.Different combinations of inter-related facial expressions for specific time frames were used to estimate mood patterns and subsequently level of involvement of a student in an e-learning environment.The results achieved during the course of research showed that mood patterns of a student provide a good correlation with his interest or involvement during online lectures and can be used to vary the content to improve students’ involvement in the e-learning system.More facial expressions and mood categories can be included to diversify the application of the proposed method.

Keywords: Mood extraction; Facial features; Facial recognition; Online education; E-Learning; Attention state; Learning styles

Abdulkareem Al-Alwani, “Mood Extraction Using Facial Features to Improve Learning Curves of Students in E-Learning Systems” International Journal of Advanced Computer Science and Applications(IJACSA), 7(11), 2016. http://dx.doi.org/10.14569/IJACSA.2016.071157

@article{Al-Alwani2016,
title = {Mood Extraction Using Facial Features to Improve Learning Curves of Students in E-Learning Systems},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.071157},
url = {http://dx.doi.org/10.14569/IJACSA.2016.071157},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {11},
author = {Abdulkareem Al-Alwani}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org