The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070256
PDF

A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions

Author 1: Abha Sharma
Author 2: R. S. Thakur

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 2, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Almost all partitioning clustering algorithms getting stuck to the local optimal solutions. Using Genetic algorithms (GA) the results can be find globally optimal. This piece of work offers and investigates a new variant of the Genetic algorithm (GA) based k-Modes clustering algorithm for categorical data. A statistical analysis have been done on the popular categorical dataset which shows the user specified cluster centres stuck at local optimal solution in K-modes algorithm even in all the higher iterations and the proposed algorithm overcome this problem of local optima. To the best of our knowledge, such comparison has been reported here for the first time for the case of categorical data. The obtained results, shows that the proposed algorithm is better over the conventional k-Modes algorithm in terms of optimal solutions and within cluster variation measure.

Keywords: Categorical data; Genetic Algorithm; Population; Population size

Abha Sharma and R. S. Thakur, “A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions” International Journal of Advanced Computer Science and Applications(IJACSA), 7(2), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070256

@article{Sharma2016,
title = {A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070256},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070256},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {2},
author = {Abha Sharma and R. S. Thakur}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org