The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070259
PDF

An Ensemble of Fine-Tuned Heterogeneous Bayesian Classifiers

Author 1: Amel Alhussan
Author 2: Khalil El Hindi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 2, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Bayesian network (BN) classifiers use different structures and different training parameters which leads to diversity in classification decisions. This work empirically shows that building an ensemble of several fine-tuned BN classifiers increases the overall classification accuracy. The accuracy of the constituent classifiers can be achieved by fine-tuning each classifier and the diversity is achieved using different BN classifiers. The proposed ensemble combines a Naive Bayes (NB) classifier, five different models of Tree Augmented Naive Bayes (TAN), and four different model of Bayesian Augmented Naive Bayes (BAN). This work also proposes a new Distance-based Diversity Measure (DDM) and uses it to analyze the diversity of the ensembles. The ensemble of fine-tuned classifier achieves better average classification accuracy than any of its constituent classifiers or the ensemble of un-tuned classifiers. Moreover, the empirical experiments present better significant results for many data sets.

Keywords: Ensemble classifier; Bayesian Network (BN) classifiers; Fine-tuned BN classifiers; Stacking; Diversity

Amel Alhussan and Khalil El Hindi, “An Ensemble of Fine-Tuned Heterogeneous Bayesian Classifiers” International Journal of Advanced Computer Science and Applications(IJACSA), 7(2), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070259

@article{Alhussan2016,
title = {An Ensemble of Fine-Tuned Heterogeneous Bayesian Classifiers},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070259},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070259},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {2},
author = {Amel Alhussan and Khalil El Hindi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org