The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070269
PDF

Hierarchical Classifiers for Multi-Way Sentiment Analysis of Arabic Reviews

Author 1: Mahmoud Al-Ayyoub
Author 2: Aya Nuseir
Author 3: Ghassan Kanaan
Author 4: Riyad Al-Shalabi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 2, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Sentiment Analysis (SA) is one of hottest fields in data mining (DM) and natural language processing (NLP). The goal of SA is to extract the sentiment conveyed in a certain text based on its content. While most current works focus on the simple problem of determining whether the sentiment is positive or negative, Multi-Way Sentiment Analysis (MWSA) focuses on sentiments conveyed through a rating or scoring system (e.g., a 5-star scoring system). In such scoring systems, the sentiments conveyed in two reviews of close scores (such as 4 stars and 5 stars) can be very similar creating an added challenge compared to traditional SA. One intuitive way of handling this challenge is via a divide-and-conquer approach where the MWSA problem is divided into a set of sub-problems allowing the use of customized classifiers to differentiate between reviews of close scores. A hierarchical classification structure can be used with this approach where each node represents a different classification sub-problem and the decision from it may lead to the invocation of another classifier. In this work, we show how the use of this divide-and-conquer hierarchical structure of classifiers can generate better results than the use of existing flat classifiers for the MWSA problem. We focus on the Arabic language for many reasons such as the importance of this language and the scarcity of prior works and available tools for it. To the best of our knowledge, very few papers have been published on MWSA of Arabic reviews. One notable work is that of Ali and Atiya, in which the authors collected a large scale Arabic Book Reviews (LABR) dataset and made it publicly available. Unfortunately, the baseline experiments on this dataset had very low accuracy. We present two different hierarchical structures and compare their accuracies with the flat structure using different core classifiers. The comparison is based on standard accuracy measures such as precision and recall in addition to using the mean squared error (MSE) as a more accurate measure given the fact that not all misclassifications are the same. The results show that, in general, hierarchical classifiers give significant improvements (of more than 50% in certain cases) over flat classifiers.

Keywords: multi-way sentiment analysis, hierarchical classi-fiers, support vector machine, decision tree, naive bayes, k-nearest neighbor, mean squared error

Mahmoud Al-Ayyoub, Aya Nuseir, Ghassan Kanaan and Riyad Al-Shalabi, “Hierarchical Classifiers for Multi-Way Sentiment Analysis of Arabic Reviews” International Journal of Advanced Computer Science and Applications(IJACSA), 7(2), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070269

@article{Al-Ayyoub2016,
title = {Hierarchical Classifiers for Multi-Way Sentiment Analysis of Arabic Reviews},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070269},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070269},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {2},
author = {Mahmoud Al-Ayyoub and Aya Nuseir and Ghassan Kanaan and Riyad Al-Shalabi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org