The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070283
PDF

Regression-Based Feature Selection on Large Scale Human Activity Recognition

Author 1: Hussein Mazaar
Author 2: Eid Emary
Author 3: Hoda Onsi

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 2, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we present an approach for regression-based feature selection in human activity recognition. Due to high dimensional features in human activity recognition, the model may have over-fitting and can’t learn parameters well. Moreover, the features are redundant or irrelevant. The goal is to select important discriminating features to recognize the human activities in videos. R-Squared regression criterion can identify the best features based on the ability of a feature to explain the variations in the target class. The features are significantly reduced, nearly by 99.33%, resulting in better classification accuracy. Support Vector Machine with a linear kernel is used to classify the activities. The experiments are tested on UCF50 dataset. The results show that the proposed model significantly outperforms state-of-the-art methods.

Keywords: Action Bank; Template Matching; SpatioTemporal Orientation Energy; Correlation; R-Squared; Support Vector Ma-chine; Logistic Regression; Linear Regression; Human Activity Recognition

Hussein Mazaar, Eid Emary and Hoda Onsi, “Regression-Based Feature Selection on Large Scale Human Activity Recognition” International Journal of Advanced Computer Science and Applications(IJACSA), 7(2), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070283

@article{Mazaar2016,
title = {Regression-Based Feature Selection on Large Scale Human Activity Recognition},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070283},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070283},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {2},
author = {Hussein Mazaar and Eid Emary and Hoda Onsi}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org