The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070311
PDF

Critical Path Reduction of Distributed Arithmetic Based FIR Filter

Author 1: Sunita Badave
Author 2: Anjali Bhalchandra

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 3, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Operating speed, which is reciprocal of critical path computation time, is one of the prominent design matrices of finite impulse response (FIR) filters. It is largely affected by both, system architecture as well as technique used to design arithmetic modules. A large computation time of multipliers in conventionally designed multipliers, limits the speed of system architecture. Distributed arithmetic is one of the techniques, used to provide multiplier-free multiplication in the implementation of FIR filter. However suffers from a sever limitation of exponential growth of look up table (LUT) with order of filter. An improved distributed arithmetic technique is addressed here to design for system architecture of FIR filter. In proposed technique, a single large LUT of conventional DA is replaced by number of smaller indexed LUT pages to restrict exponential growth and to reduce system access time. It also eliminates the use of adders. Selection module selects the desired value from desired page, which leads to reduce computational time of critical path. Trade off between access times of LUT pages and selection module helps to achieve minimum critical path so as to maximize the operating speed. Implementations are targeted to Xilinx ISE, Virtex IV devices. FIR filter with 8 bit data width of input sample results are presented here. It is observed that, proposed design perform significantly faster as compared to the conventional DA and existing DA based designs.

Keywords: Critical Path; Multiplier less FIR filter; Distributed Arithmetic; LUT Design; Indexed LUT

Sunita Badave and Anjali Bhalchandra, “Critical Path Reduction of Distributed Arithmetic Based FIR Filter” International Journal of Advanced Computer Science and Applications(IJACSA), 7(3), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070311

@article{Badave2016,
title = {Critical Path Reduction of Distributed Arithmetic Based FIR Filter},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070311},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070311},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {3},
author = {Sunita Badave and Anjali Bhalchandra}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org