The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070333
PDF

Towards a New Approach to Improve the Classification Accuracy of the Kohonen’s Self-Organizing Map During Learning Process

Author 1: El Khatir HAIMOUDI
Author 2: Hanane FAKHOURI
Author 3: Loubna CHERRAT
Author 4: Mostafa Ezziyyani

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 3, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Kohonen self-organization algorithm, known as “topologic maps algorithm”, has been largely used in many applications for classification. However, few theoretical studies have been proposed to improve and optimize the learning process of classification and clustering for dynamic and scalable systems taking into account the evolution of multi-parameter objects. Our objective in this paper is to provide a new approach to improve the accuracy and quality of the classification method based on the basic advantages of the Kohonen self-organization algorithm and on new network functions to pre-eliminate the auto-detected of drawbacks and redundancy.

Keywords: Artificial neural networks; self-organization map; Learning algorithm; Classification; Clustering; Principal components Analysis; power iteration

El Khatir HAIMOUDI, Hanane FAKHOURI, Loubna CHERRAT and Mostafa Ezziyyani, “Towards a New Approach to Improve the Classification Accuracy of the Kohonen’s Self-Organizing Map During Learning Process” International Journal of Advanced Computer Science and Applications(IJACSA), 7(3), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070333

@article{HAIMOUDI2016,
title = {Towards a New Approach to Improve the Classification Accuracy of the Kohonen’s Self-Organizing Map During Learning Process},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070333},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070333},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {3},
author = {El Khatir HAIMOUDI and Hanane FAKHOURI and Loubna CHERRAT and Mostafa Ezziyyani}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org