The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070345
PDF

Feature Selection Based on Minimum Overlap Probability (MOP) in Identifying Beef and Pork

Author 1: Khoerul Anwar
Author 2: Agus Harjoko
Author 3: Suharto Suharto

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 3, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Feature selection is one of the most important techniques in image processing for classifying. In classifying beef and pork based on texture feature, feature overlaps are difficult issues. This paper proposed feature selection method by Minimum Overlap Probability (MOP) to get the best feature. The method was tested on two datasets of features of digital images of beef and pork which had similar textures and overlapping features. The selected features were used for data training and testing by Backpropagation Neural Network (BPNN). Data training process used single features and several selected feature combinations. The test result showed that BPNN managed to detect beef or pork images with 97.75% performance. From performance a conclusion was drawn that MOP method could be used to select the best features in feature selection for classifying/identifying two digital image objects with similar textures.

Keywords: overlap; feature selection; best feature; minimum overlap probability (MOP); identifying

Khoerul Anwar, Agus Harjoko and Suharto Suharto, “Feature Selection Based on Minimum Overlap Probability (MOP) in Identifying Beef and Pork” International Journal of Advanced Computer Science and Applications(IJACSA), 7(3), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070345

@article{Anwar2016,
title = {Feature Selection Based on Minimum Overlap Probability (MOP) in Identifying Beef and Pork},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070345},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070345},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {3},
author = {Khoerul Anwar and Agus Harjoko and Suharto Suharto}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org