The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

A New Approach for Time Series Forecasting: Bayesian Enhanced by Fractional Brownian Motion with Application to Rainfall Series

Author 1: Cristian Rodriguez Rivero
Author 2: Daniel Patiño
Author 3: Julian Pucheta
Author 4: Victor Sauchelli

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2016.070334

Article Published in International Journal of Advanced Computer Science and Applications(ijacsa), Volume 7 Issue 3, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A new predictor algorithm based on Bayesian enhanced approach (BEA) for long-term chaotic time series using artificial neural networks (ANN) is presented. The technique based on stochastic models uses Bayesian inference by means of Fractional Brownian Motion as model data and Beta model as prior information. However, the need of experimental data for specifying and estimating causal models has not changed. Indeed, Bayes method provides another way to incorporate prior knowledge in forecasting models; the simplest representations of prior knowledge in forecasting models are hard to beat in many forecasting situations, either because prior knowledge is insufficient to improve on models or because prior knowledge leads to the conclusion that the situation is stable. This work contributes with long-term time series prediction, to give forecast horizons up to 18 steps ahead. Thus, the forecasted values and validation data are presented by solutions of benchmark chaotic series such as Mackey-Glass, Lorenz, Henon, Logistic, Rössler, Ikeda, Quadratic one-dimensional map series and monthly cumulative rainfall collected from Despeñaderos, Cordoba, Argentina. The computational results are evaluated against several non-linear ANN predictors proposed before on high roughness series that shows a better performance of Bayesian Enhanced approach in long-term forecasting.

Keywords: long-term prediction; neural networks; Bayesian inference; Fractional Brownian Motion; Hurst parameter

Cristian Rodriguez Rivero, Daniel Patiño, Julian Pucheta and Victor Sauchelli, “A New Approach for Time Series Forecasting: Bayesian Enhanced by Fractional Brownian Motion with Application to Rainfall Series” International Journal of Advanced Computer Science and Applications(ijacsa), 7(3), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070334

@article{Rivero2016,
title = {A New Approach for Time Series Forecasting: Bayesian Enhanced by Fractional Brownian Motion with Application to Rainfall Series},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070334},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070334},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {3},
author = {Cristian Rodriguez Rivero and Daniel Patiño and Julian Pucheta and Victor Sauchelli}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org