The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070462
PDF

Computational Intelligence Optimization Algorithm Based on Meta-heuristic Social-Spider: Case Study on CT Liver Tumor Diagnosis

Author 1: Mohamed Abu ElSoud
Author 2: Ahmed M. Anter

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 4, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Feature selection is an importance step in classification phase and directly affects the classification performance. Feature selection algorithm explores the data to eliminate noisy, redundant, irrelevant data, and optimize the classification performance. This paper addresses a new subset feature selection performed by a new Social Spider Optimizer algorithm (SSOA) to find optimal regions of the complex search space through the interaction of individuals in the population. SSOA is a new natural meta-heuristic computation algorithm which mimics the behavior of cooperative social-spiders based on the biological laws of the cooperative colony. Different combinatorial set of feature extraction is obtained from different methods in order to keep and achieve optimal accuracy. Normalization function is applied to smooth features between [0,1] and decrease gap between features. SSOA based on feature selection and reduction compared with other methods over CT liver tumor dataset, the proposed approach proves better performance in both feature size reduction and classification accuracy. Improvements are observed consistently among 4 classification methods. A theoretical analysis that models the number of correctly classified data is proposed using Confusion Matrix, Precision, Recall, and Accuracy. The achieved accuracy is 99.27%, precision is 99.37%, and recall is 99.19%. The results show that, the mechanism of SSOA provides very good exploration, exploitation and local minima avoidance.

Keywords: Liver; CT; Social-Spider Optimization; Metaheuristics; Support Vector Machine; Random Selection Features; Classification; Sequential Forward Floating Search; Optimization.

Mohamed Abu ElSoud and Ahmed M. Anter, “Computational Intelligence Optimization Algorithm Based on Meta-heuristic Social-Spider: Case Study on CT Liver Tumor Diagnosis” International Journal of Advanced Computer Science and Applications(IJACSA), 7(4), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070462

@article{ElSoud2016,
title = {Computational Intelligence Optimization Algorithm Based on Meta-heuristic Social-Spider: Case Study on CT Liver Tumor Diagnosis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070462},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070462},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {4},
author = {Mohamed Abu ElSoud and Ahmed M. Anter}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org