The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070467
PDF

Improving Credit Scorecard Modeling Through Applying Text Analysis

Author 1: Omar Ghailan
Author 2: Hoda M.O. Mokhtar
Author 3: Osman Hegazy

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 4, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In the credit card scoring and loans management, the prediction of the applicant’s future behavior is an important decision support tool and a key factor in reducing the risk of Loan Default. A lot of data mining and classification approaches have been developed for the credit scoring purpose. For the best of our knowledge, building a credit scorecard by analyzing the textual data in the application form has not been explored so far. This paper proposes a comprehensive credit scorecard model technique that improves credit scorecard modeling though employing textual data analysis. This study uses a sample of loan application forms of a financial institution providing loan services in Yemen, which represents a real-world situation of the credit scoring and loan management. The sample contains a set of Arabic textual data attributes defining the applicants. The credit scoring model based on the text mining pre-processing and logistic regression techniques is proposed and evaluated through a comparison with a group of credit scorecard modeling techniques that use only the numeric attributes in the application form. The results show that adding the textual attributes analysis achieves higher classification effectiveness and outperforms the other traditional numerical data analysis techniques.

Keywords: Credit Scoring; Textual Data Analysis; Logistic Regression; Loan Default.

Omar Ghailan, Hoda M.O. Mokhtar and Osman Hegazy, “Improving Credit Scorecard Modeling Through Applying Text Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 7(4), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070467

@article{Ghailan2016,
title = {Improving Credit Scorecard Modeling Through Applying Text Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070467},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070467},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {4},
author = {Omar Ghailan and Hoda M.O. Mokhtar and Osman Hegazy}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org