The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Call for Papers
  • Proposals
  • Guest Editors

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Educational Data Mining & Students’ Performance Prediction

Author 1: Amjad Abu Saa

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2016.070531

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 5, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: It is important to study and analyse educational data especially students’ performance. Educational Data Mining (EDM) is the field of study concerned with mining educational data to find out interesting patterns and knowledge in educational organizations. This study is equally concerned with this subject, specifically, the students’ performance. This study explores multiple factors theoretically assumed to affect students’ performance in higher education, and finds a qualitative model which best classifies and predicts the students’ performance based on related personal and social factors.

Keywords: Data Mining; Education; Students; Performance; Patterns

Amjad Abu Saa, “Educational Data Mining & Students’ Performance Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 7(5), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070531

@article{Saa2016,
title = {Educational Data Mining & Students’ Performance Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070531},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070531},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {5},
author = {Amjad Abu Saa}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2022

3-4 March 2022

  • Virtual

Computing Conference 2022

14-15 July 2022

  • Hybrid / London, UK

IntelliSys 2022

1-2 September 2022

  • Hybrid / Amsterdam

Future Technologies Conference (FTC) 2022

20-21 October 2022

  • Hybrid / Vancouver
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org