The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070536
PDF

Hybrid Deep Network and Polar Transformation Features for Static Hand Gesture Recognition in Depth Data

Author 1: Vo Hoai Viet
Author 2: Tran Thai Son
Author 3: Ly Quoc Ngoc

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 5, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Static hand gesture recognition is an interesting and challenging problem in computer vision. It is considered a significant component of Human Computer Interaction and it has attracted many research efforts from the computer vision community in recent decades for its high potential applications, such as game interaction and sign language recognition. With the recent advent of the cost-effective Kinect, depth cameras have received a great deal of attention from researchers. It promoted interest within the vision and robotics community for its broad applications. In this paper, we propose the effective hand segmentation from the full depth image that is important step before extracting the features to represent for hand gesture. We also represent the novel hand descriptor explicitly encodes the shape and appearance information from depth maps that are significant characteristics for static hand gestures. We propose hand descriptor based on Polar Transformation coordinate is called Histogram of Polar Transformation (HPT) in order to capture both shape and appearance. Beside a robust hand descriptor, a robust classification model also plays a very important role in the hand recognition model. In order to have a high performance in recognition rate, we propose hybrid model for classification based on Sparse Auto-encoder and Deep Neural Network. We demonstrate large improvements over the state-of-the-art methods on two challenging benchmark datasets are NTU Hand Digits and ASL Finger Spelling and achieve the overall accuracy as 97.7% and 84.58%, respectively. Our experiments show that the proposed method significantly outperforms state-of-the-art techniques.

Keywords: Hand Gesture Recognition; Deep Network; Polar Transformation; Depth Data

Vo Hoai Viet, Tran Thai Son and Ly Quoc Ngoc, “Hybrid Deep Network and Polar Transformation Features for Static Hand Gesture Recognition in Depth Data” International Journal of Advanced Computer Science and Applications(IJACSA), 7(5), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070536

@article{Viet2016,
title = {Hybrid Deep Network and Polar Transformation Features for Static Hand Gesture Recognition in Depth Data},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070536},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070536},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {5},
author = {Vo Hoai Viet and Tran Thai Son and Ly Quoc Ngoc}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org