The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070555
PDF

Survey of Techniques for Deep Web Source Selection and Surfacing the Hidden Web Content

Author 1: Khushboo Khurana
Author 2: M.B. Chandak

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 5, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Large and continuously growing dynamic web content has created new opportunities for large-scale data analysis in the recent years. There is huge amount of information that the traditional web crawlers cannot access, since they use link analysis technique by which only the surface web can be accessed. Traditional search engine crawlers require the web pages to be linked to other pages via hyperlinks causing large amount of web data to be hidden from the crawlers. Enormous data is available in deep web that can be useful to gain new insight for various domains, creating need to access the information from the deep web by developing efficient techniques. As the amount of Web content grows rapidly, the types of data sources are proliferating, which often provide heterogeneous data. So we need to select Deep Web Data sources that can be used by the integration systems. The paper discusses various techniques that can be used to surface the deep web information and techniques for Deep Web Source Selection.

Keywords: Deep Web; Surfacing Deep Web; Source Selection; Deep Web Crawler; Schema Matching

Khushboo Khurana and M.B. Chandak, “Survey of Techniques for Deep Web Source Selection and Surfacing the Hidden Web Content” International Journal of Advanced Computer Science and Applications(IJACSA), 7(5), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070555

@article{Khurana2016,
title = {Survey of Techniques for Deep Web Source Selection and Surfacing the Hidden Web Content},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070555},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070555},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {5},
author = {Khushboo Khurana and M.B. Chandak}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org