The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset

Author 1: Mohammad Reza Parsaei
Author 2: Samaneh Miri Rostami
Author 3: Reza Javidan

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2016.070603

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 6, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Intrusion detection systems aim to detect malicious viruses from computer and network traffic, which is not possible using common firewall. Most intrusion detection systems are developed based on machine learning techniques. Since datasets which used in intrusion detection are imbalanced, in the previous methods, the accuracy of detecting two attack classes, R2L and U2R, is lower than that of the normal and other attack classes. In order to overcome this issue, this study employs a hybrid approach. This hybrid approach is a combination of synthetic minority oversampling technique (SMOTE) and cluster center and nearest neighbor (CANN). Important features are selected using leave one out method (LOO). Moreover, this study employs NSL KDD dataset. Results indicate that the proposed method improves the accuracy of detecting U2R and R2L attacks in comparison to the baseline paper by 94% and 50%, respectively

Keywords: intrusion detection system; feature selection; imbalanced dataset; SMOTE; NSL KDD

Mohammad Reza Parsaei, Samaneh Miri Rostami and Reza Javidan, “A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset” International Journal of Advanced Computer Science and Applications(IJACSA), 7(6), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070603

@article{Parsaei2016,
title = {A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070603},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070603},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {6},
author = {Mohammad Reza Parsaei and Samaneh Miri Rostami and Reza Javidan}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org