The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving
  • Editorial Board

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Computing Conference 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future of Information and Communication Conference (FICC) 2021

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset

Author 1: Mohammad Reza Parsaei
Author 2: Samaneh Miri Rostami
Author 3: Reza Javidan

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2016.070603

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 6, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Intrusion detection systems aim to detect malicious viruses from computer and network traffic, which is not possible using common firewall. Most intrusion detection systems are developed based on machine learning techniques. Since datasets which used in intrusion detection are imbalanced, in the previous methods, the accuracy of detecting two attack classes, R2L and U2R, is lower than that of the normal and other attack classes. In order to overcome this issue, this study employs a hybrid approach. This hybrid approach is a combination of synthetic minority oversampling technique (SMOTE) and cluster center and nearest neighbor (CANN). Important features are selected using leave one out method (LOO). Moreover, this study employs NSL KDD dataset. Results indicate that the proposed method improves the accuracy of detecting U2R and R2L attacks in comparison to the baseline paper by 94% and 50%, respectively

Keywords: intrusion detection system; feature selection; imbalanced dataset; SMOTE; NSL KDD

Mohammad Reza Parsaei, Samaneh Miri Rostami and Reza Javidan, “A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset” International Journal of Advanced Computer Science and Applications(IJACSA), 7(6), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070603

@article{Parsaei2016,
title = {A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070603},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070603},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {6},
author = {Mohammad Reza Parsaei and Samaneh Miri Rostami and Reza Javidan}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2021

29-30 April 2021

  • Virtual

Computing Conference 2021

15-16 July 2021

  • London, United Kingdom

IntelliSys 2021

2-3 September 2021

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2021

28-29 October 2021

  • Vancouver, Canada
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© 2018 The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org