The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Knowledge Extraction from Metacognitive Reading Strategies Data Using Induction Trees

Author 1: Christopher Taylor
Author 2: Arun Kulkarni
Author 3: Kouider Mokhtar

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2016.070634

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 6, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The assessment of students’ metacognitive knowledge and skills about reading is critical in determining their ability to read academic texts and do so with comprehension. In this paper, we used induction trees to extract metacognitive knowledge about reading from a reading strategies dataset obtained from a group of 1636 undergraduate college students. Using a C4.5 algorithm, we constructed decision trees, which helped us classify participants into three groups based on their metacognitive strategy awareness levels consisting of global, problem-solving and support reading strategies. We extracted rules from these decision trees, and in order to evaluate accuracy of the extracted rules, we built a fuzzy inference system (FIS) with the extracted rules as a rule base and classified the test dataset with the FIS. The extracted rules are evaluated using measures such as the overall efficiency and Kappa coefficient

Keywords: Metacognitive Reading Strategies; Classification; Induction Tree; Rule Extraction; Fuzzy Inference System

Christopher Taylor, Arun Kulkarni and Kouider Mokhtar, “Knowledge Extraction from Metacognitive Reading Strategies Data Using Induction Trees” International Journal of Advanced Computer Science and Applications(IJACSA), 7(6), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070634

@article{Taylor2016,
title = {Knowledge Extraction from Metacognitive Reading Strategies Data Using Induction Trees},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070634},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070634},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {6},
author = {Christopher Taylor and Arun Kulkarni and Kouider Mokhtar}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org