The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070660
PDF

Exploiting Document Level Semantics in Document Clustering

Author 1: Muhammad Rafi
Author 2: Muhammad Naveed Sharif
Author 3: Waleed Arshad
Author 4: Habibullah Rafay

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 6, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Document clustering is an unsupervised machine learning method that separates a large subject heterogeneous collection (Corpus) into smaller, more manageable, subject homogeneous collections (clusters). Traditional method of document clustering works around extracting textual features like: terms, sequences, and phrases from documents. These features are independent of each other and do not cater meaning behind these word in the clustering process. In order to perform semantic viable clustering, we believe that the problem of document clustering has two main components: (1) to represent the document in such a form that it inherently captures semantics of the text. This may also help to reduce dimensionality of the document and (2) to define a similarity measure based on the lexical, syntactic and semantic features such that it assigns higher numerical values to document pairs which have higher syntactic and semantic relationship. In this paper, we propose a representation of document by extracting three different types of features from a given document. These are lexical , syntactic and semantic features. A meta-descriptor for each document is proposed using these three features: first lexical, then syntactic and in the last semantic. A document to document similarity matrix is produced where each entry of this matrix contains a three value vector for each lexical , syntactic and semantic . The main contributions from this research are (i) A document level descriptor using three different features for text like: lexical, syntactic and semantics. (ii) we propose a similarity function using these three, and (iii) we define a new candidate clustering algorithm using three component of similarity measure to guide the clustering process in a direction that produce more semantic rich clusters. We performed an extensive series of experiments on standard text mining data sets with external clustering evaluations like: FMeasure and Purity, and have obtained encouraging results.

Keywords: Document Clustering; Text Mining; Similarity Measure; Semantics

Muhammad Rafi, Muhammad Naveed Sharif, Waleed Arshad and Habibullah Rafay, “Exploiting Document Level Semantics in Document Clustering” International Journal of Advanced Computer Science and Applications(IJACSA), 7(6), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070660

@article{Rafi2016,
title = {Exploiting Document Level Semantics in Document Clustering},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070660},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070660},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {6},
author = {Muhammad Rafi and Muhammad Naveed Sharif and Waleed Arshad and Habibullah Rafay}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org