The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070667
PDF

Determining adaptive thresholds for image segmentation for a license plate recognition system

Author 1: Siti Norul Huda Sheikh Abdullah
Author 2: Khairuddin Omar
Author 3: Abbas Salimi Zaini
Author 4: Maria Petrou
Author 5: Marzuki Khalid

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 6, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: A vehicle license plate recognition (LPR) system is useful to many applications, such as entrance admission, security, parking control, airport and cargo, traffic and speed control. This paper describe an adaptive threshold for image segmentation applied to a system for Malaysian intelligent license plate recognition (MyiLPR). Due to the different types of license plates used, the requirements of an automatic LPR system are rather different for each country. Upon receiving the input car image, this system (MyiLPR) detects and segments the license plate based on proposed adaptive threshold via image and blob histogram, and blob agglomeration, and finally, it extracts geometric character features and classifies them using neural network. The use of the proposed adaptive threshold increased the detection, segmentation and recognition rate to 99%, 94.98% and 90% correspondingly, from 95%, 78.27% and 71.08% obtained with the fixed threshold used in the originally proposed system

Keywords: adaptive threshold; image segmentation; license plate recognition; neural network; computer surveillance

Siti Norul Huda Sheikh Abdullah, Khairuddin Omar, Abbas Salimi Zaini, Maria Petrou and Marzuki Khalid, “Determining adaptive thresholds for image segmentation for a license plate recognition system” International Journal of Advanced Computer Science and Applications(IJACSA), 7(6), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070667

@article{Abdullah2016,
title = {Determining adaptive thresholds for image segmentation for a license plate recognition system},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070667},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070667},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {6},
author = {Siti Norul Huda Sheikh Abdullah and Khairuddin Omar and Abbas Salimi Zaini and Maria Petrou and Marzuki Khalid}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org