The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070724
PDF

Decision Support System for Diabetes Mellitus through Machine Learning Techniques

Author 1: Tarik A. Rashid
Author 2: Saman . M. Abdulla
Author 3: Rezhna . M. Abdulla

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 7, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: recently, the diseases of diabetes mellitus have grown into extremely feared problems that can have damaging effects on the health condition of their sufferers globally. In this regard, several machine learning models have been used to predict and classify diabetes types. Nevertheless, most of these models attempted to solve two problems; categorizing patients in terms of diabetic types and forecasting blood surge rate of patients. This paper presents an automatic decision support system for diabetes mellitus through machine learning techniques by taking into account the above problems, plus, reflecting the skills of medical specialists who believe that there is a great relationship between patient’s symptoms with some chronic diseases and the blood sugar rate. Data sets are collected from Layla Qasim Clinical Center in Kurdistan Region, then, the data is cleaned and proposed using feature selection techniques such as Sequential Forward Selection and the Correlation Coefficient, finally, the refined data is fed into machine learning models for prediction, classification, and description purposes. This system enables physicians and doctors to provide diabetes mellitus (DM) patients good health treatments and recommendations.

Keywords: Diabetes disease; Blood sugar rate and symptoms; ANN; Prediction and Classification models

Tarik A. Rashid, Saman . M. Abdulla and Rezhna . M. Abdulla, “Decision Support System for Diabetes Mellitus through Machine Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 7(7), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070724

@article{Rashid2016,
title = {Decision Support System for Diabetes Mellitus through Machine Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070724},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070724},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {7},
author = {Tarik A. Rashid and Saman . M. Abdulla and Rezhna . M. Abdulla}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org