The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070748
PDF

Finding Non Dominant Electrodes Placed in Electroencephalography (EEG) for Eye State Classification using Rule Mining

Author 1: Mridu Sahu
Author 2: N.K.Nagwani
Author 3: ShrishVerma

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 7, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Electroencephalography is a measure of brain activity by wave analysis; it consist number of electrodes. Finding most non-dominant electrode positions in Eye state classification is important task for classification. The proposed work is identifying which electrodes are less responsible for classification. This is a feature selection step required for optimal EEG channel selection. Feature selection is a mechanism for subset selection of input features, in this work input features are EEG Electrodes. Most Non Dominant (MND), gives irrelevant input electrodes in eye state classification and thus it, reduces computation cost. MND set creation completed using different stages. Stages includes, first extreme value removal from electroencephalogram (EEG) corpus for data cleaning purpose. Then next step is attribute selection, this is a preprocessing step because it is completed before classification step. MND set gives electrodes they are less responsible for classification and if any EEG electrode corpus wants to remove feature present in this set, then time and space required to build the classification model is (20%) less than as compare to all electrodes for the same, and accuracy of classification not very much affected. The proposed article uses different attribute evaluation algorithm with Ranker Search Method.

Keywords: Electroencephalography (EEG); Most Non Dominant (MND); Ranker algorithm; classification; EEG

Mridu Sahu, N.K.Nagwani and ShrishVerma, “Finding Non Dominant Electrodes Placed in Electroencephalography (EEG) for Eye State Classification using Rule Mining” International Journal of Advanced Computer Science and Applications(IJACSA), 7(7), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070748

@article{Sahu2016,
title = {Finding Non Dominant Electrodes Placed in Electroencephalography (EEG) for Eye State Classification using Rule Mining},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070748},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070748},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {7},
author = {Mridu Sahu and N.K.Nagwani and ShrishVerma}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org