The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070815
PDF

Content based Video Retrieval Systems Performance based on Multiple Features and Multiple Frames using SVM

Author 1: Mohd Aasif Ansari
Author 2: Hemlata Vasishtha

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 8, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, Content Based Video Retrieval Systems performance is analysed and compared for three different types of feature vectors. These types of features are generated using three different algorithms; Block Truncation Coding (BTC) extended for colors, Kekre’s Fast Codebook Generation (KFCG) algorithm and Gabor filters. The feature vectors are extracted from multiple frames instead of using only key frames or all frames from the videos. The performance of each type of feature is analysed by comparing the results obtained by two different techniques; Euclidean Distance and Support Vector Machine (SVM). Although a significant number of researchers have expressed dissatisfaction to use image as a query for video retrieval systems, the techniques and features used here provide enhanced and higher retrieval results while using images from the videos. Apart from higher efficiency, complexity has also been reduced as it is not required to find key frames for all the shots. The system is evaluated using a database of 1000 videos consisting of 20 different categories. Performance achieved using BTC features calculated from color components is compared with that achieved using Gabor features and with KFCG features. These performances are compared again with the performances obtained from systems using SVM and the systems without using SVM.

Keywords: CBVR; KFCG; Multiple Frames; SVM; BTC; Gabor filter

Mohd Aasif Ansari and Hemlata Vasishtha, “Content based Video Retrieval Systems Performance based on Multiple Features and Multiple Frames using SVM” International Journal of Advanced Computer Science and Applications(IJACSA), 7(8), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070815

@article{Ansari2016,
title = {Content based Video Retrieval Systems Performance based on Multiple Features and Multiple Frames using SVM},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070815},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070815},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {8},
author = {Mohd Aasif Ansari and Hemlata Vasishtha}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org