The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2016.070836
PDF

Urdu Text Classification using Majority Voting

Author 1: Muhammad Usman
Author 2: Zunaira Shafique
Author 3: Saba Ayub
Author 4: Kamran Malik

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 7 Issue 8, 2016.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Text classification is a tool to assign the predefined categories to the text documents using supervised machine learning algorithms. It has various practical applications like spam detection, sentiment detection, and detection of a natural language. Based on the idea we applied five well-known classification techniques on Urdu language corpus and assigned a class to the documents using majority voting. The corpus contains 21769 news documents of seven categories (Business, Entertainment, Culture, Health, Sports, and Weird). The algorithms were not able to work directly on the data, so we applied the preprocessing techniques like tokenization, stop words removal and a rule-based stemmer. After preprocessing 93400 features are extracted from the data to apply machine learning algorithms. Furthermore, we achieved up to 94% precision and recall using majority voting.

Keywords: Text Classification; Tokenization; Stemming; Naïve Bayes; SVM; Random Forest; Bernoulli NB; Multinomial NB; SGD; Classifier; Majority Voting

Muhammad Usman, Zunaira Shafique, Saba Ayub and Kamran Malik, “Urdu Text Classification using Majority Voting” International Journal of Advanced Computer Science and Applications(IJACSA), 7(8), 2016. http://dx.doi.org/10.14569/IJACSA.2016.070836

@article{Usman2016,
title = {Urdu Text Classification using Majority Voting},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2016.070836},
url = {http://dx.doi.org/10.14569/IJACSA.2016.070836},
year = {2016},
publisher = {The Science and Information Organization},
volume = {7},
number = {8},
author = {Muhammad Usman and Zunaira Shafique and Saba Ayub and Kamran Malik}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org