The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080152
PDF

An Online Synchronous Brain Wave Signal Pattern Classifier with Parallel Processing Optimization for Embedded System Implementation

Author 1: Bruno Senzio-Savino
Author 2: Mohammad Reza Alsharif
Author 3: Carlos E. Gutierrez
Author 4: Kamaledin Setarehdan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 1, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Commercial Brain Computer Interface applications are currently expanding due to the success of widespread dis-semination of low cost devices. Reducing the cost of a traditional system requires appropriate resources, such as proper software tools for signal processing and characterization. In this paper, a methodology for classifying a set of attention and meditation brain wave signal patterns is presented by means of unsupervised signal feature clustering with batch Self-Organizing Maps (b-SOM) and supervised classification by Support Vector Machine (SVM). Previous research on this matter did not combine both methods and also required an important amount of computation time. With the use of a small square neuron grid by b-SOM and an RBF kernel SVM, a well delimited classifier was obtained. The recognition rate was 70% after parameter tuning. In terms of optimization, the parallel b-SOM algorithm reduced drastically the computation time, allowing online clustering and classification for full length input data.

Keywords: Brain Computer Interface; batch SOM; SVM; Parallel-processing

Bruno Senzio-Savino, Mohammad Reza Alsharif, Carlos E. Gutierrez and Kamaledin Setarehdan, “An Online Synchronous Brain Wave Signal Pattern Classifier with Parallel Processing Optimization for Embedded System Implementation” International Journal of Advanced Computer Science and Applications(IJACSA), 8(1), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080152

@article{Senzio-Savino2017,
title = {An Online Synchronous Brain Wave Signal Pattern Classifier with Parallel Processing Optimization for Embedded System Implementation},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080152},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080152},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {1},
author = {Bruno Senzio-Savino and Mohammad Reza Alsharif and Carlos E. Gutierrez and Kamaledin Setarehdan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org