The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081013
PDF

A Feature Fusion Approach for Hand Tools Classification

Author 1: Mostafa Ibrahim
Author 2: Alaa Ahmed

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 10, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The most important functions in objects classification and recognition system are to segment the objects from the input image, extract common features from the objects, and classify these objects as a member of one of the considered object classes. In this paper, we present a new approach for feature-based objects classification. The main idea of the new approach is the fusion of two different feature vectors that are calculated using Fourier descriptors and moment invariants. The fused moment-Fourier feature vector is invariant to image scaling, rotation, and translation. The fused feature vector for a reference object is used for training feed-forward neural network classifier. Classification of some hand tools is used to evaluate the performance of the proposed classification approach. The results show an appreciable increase in the classification accuracy rate with a considerable decrease in the classifier learning time.

Keywords: Feature fusion; neural network classifier; invariant features; objects classification

Mostafa Ibrahim and Alaa Ahmed, “A Feature Fusion Approach for Hand Tools Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 8(10), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081013

@article{Ibrahim2017,
title = {A Feature Fusion Approach for Hand Tools Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081013},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081013},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {10},
author = {Mostafa Ibrahim and Alaa Ahmed}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org