The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081015
PDF

Lung-Deep: A Computerized Tool for Detection of Lung Nodule Patterns using Deep Learning Algorithms Detection of Lung Nodules Patterns

Author 1: Qaisar Abbas

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 10, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The detection of lung-related disease for radiologists is a tedious and time-consuming task. For this reason, automatic computer-aided diagnosis (CADs) systems were developed by using digital CT scan images of lungs. The detection of lung nodule patterns is an important step for the automatic development of CAD system. Currently, the patterns of lung nodule are detected through domain-expert knowledge of image processing and accuracy is also not up-to-the-mark. Therefore, a computerized CADs tool is presented in this paper to identify six different patterns of lung nodules based on multi-layer deep learning ( known as Lung-Deep) algorithms compare to state-of-the-art systems without using the technical image processing methods. A multilayer combination of the convolutional neural network (CNN), recurrent neural networks (RNNs) and softmax linear classifiers are integrated to develop the Lung-Deep without doing any pre- or post-processing steps. The Lung-Deep system is tested with manually draw radiologist contours on the 1200 images including 3250 nodules by using statistical measures. On this dataset, the higher sensitivity (SE) of 88%, specificity (SP) of 80% and 0.98 of the area under the receiver operating curve (AUC) of 0.98 are obtained compared to other systems. Hence, this proposed lung-deep system is outperformed by integrating different layers of deep learning algorithms to detect six patterns of nodules.

Keywords: Computer-aided diagnosis; lung nodules; patterns detection; deep learning; convolutional neural network; recurrent neural network

Qaisar Abbas, “Lung-Deep: A Computerized Tool for Detection of Lung Nodule Patterns using Deep Learning Algorithms Detection of Lung Nodules Patterns” International Journal of Advanced Computer Science and Applications(IJACSA), 8(10), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081015

@article{Abbas2017,
title = {Lung-Deep: A Computerized Tool for Detection of Lung Nodule Patterns using Deep Learning Algorithms Detection of Lung Nodules Patterns},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081015},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081015},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {10},
author = {Qaisar Abbas}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org