The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081038
PDF

Sentiment Summerization and Analysis of Sindhi Text

Author 1: Mazhar Ali
Author 2: Asim Imdad Wagan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 10, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Text corpus is important for assessment of language features and variation analysis. Machine learning techniques identify the language terms, features, text structures and sentiment from linguistic corpus. Sindhi language is one of the oldest languages of the world having proper script and complete grammar. Sindhi is remained less resourced language computationally even in this digital era. Viewing this problem of Sindhi language, Sindhi NLP toolkit is developed to solve the Sindhi NLP and computational linguistics problems. Therefore, this research work may be an addition to NLP. This research study has developed an own Sindhi sentimentally structured and analyzed corpus on the basis of accumulated results of Sindhi sentiment analysis tool. Corpus is normalized and analyzed for language features and variation analysis using DTM and TF-IDF techniques. DTM and TF-IDF analysis is performed using n-gram model. The supervised machine learning model is formulated using SVMs and K-NN techniques to perform analysis on Sindhi sentiment analysis corpus dataset. Precision, recall and f-score show better performance of machine learning technique than other techniques. Cross validation techniques is used with 10 folds to validate and evaluate data set randomly for supervised machine learning analysis. Research study opens doors for linguists, data analysts and decision makers to work more for sentiment summarization and visual tracking.

Keywords: Sindhi NLP; sentiment structurization; sentiment analysis; supervised analysis

Mazhar Ali and Asim Imdad Wagan, “Sentiment Summerization and Analysis of Sindhi Text” International Journal of Advanced Computer Science and Applications(IJACSA), 8(10), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081038

@article{Ali2017,
title = {Sentiment Summerization and Analysis of Sindhi Text},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081038},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081038},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {10},
author = {Mazhar Ali and Asim Imdad Wagan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org