The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081048
PDF

Accuracy Based Feature Ranking Metric for Multi-Label Text Classification

Author 1: Muhammad Nabeel Asim
Author 2: Abdur Rehman
Author 3: Umar Shoaib

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 10, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In many application domains, such as machine learning, scene and video classification, data mining, medical diagnosis and machine vision, instances belong to more than one categories. Feature selection in single label text classification is used to reduce the dimensionality of datasets by filtering out irrelevant and redundant features. The process of dimensionality reduction in multi-label classification is a different scenario because here features may belong to more then one classes. Label and instance space is rapidly increasing by the grandiose of Internet, which is challenging for Multi-Label Classification (MLC). Feature selection is crucial for reduction of data in MLC. Method adaptation and data set transformation are two techniques used to select features in multi label text classification. In this paper, we present dataset transformation technique to reduce the dimensionality of multi-label text data. We used two model transformation approaches: Binary Relevance, and Label Power set for transformation of data from multi-label to single label. The Process of feature selection is done using filter approach which utilizes the data to decide the importance of features without applying learning algorithm. In this paper we used a simple measure (ACC2) for feature selection in multi-label text data. We used problem transformation approach to apply single label feature selection measures on multi-label text data; did the comparison of ACC2 with two other feature selection methods, information gain (IG) and Relief measure. Experimentation is done on three bench mark datasets and their empirical evaluation results are shown. ACC2 is found to perform better than IG and Relief in 80% cases of our experiments.

Keywords: Binary relevance (BR); label powerset (LP); ACC2; information gain (IG); Relief-F (RF)

Muhammad Nabeel Asim, Abdur Rehman and Umar Shoaib, “Accuracy Based Feature Ranking Metric for Multi-Label Text Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 8(10), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081048

@article{Asim2017,
title = {Accuracy Based Feature Ranking Metric for Multi-Label Text Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081048},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081048},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {10},
author = {Muhammad Nabeel Asim and Abdur Rehman and Umar Shoaib}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org