The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081050
PDF

RGBD Human Action Recognition using Multi-Features Combination and K-Nearest Neighbors Classification

Author 1: Rawya Al-Akam
Author 2: Dietrich Paulus

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 10, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In this paper, we present a novel system to analyze human body motions for action recognition task from two sets of features using RGBD videos. The Bag-of-Features approach is used for recognizing human action by extracting local spatialtemporal features and shape invariant features from all video frames. These feature vectors are computed in four steps: Firstly, detecting all interest keypoints from RGB video frames using Speed-Up Robust Features and filters motion points using Motion History Image and Optical Flow, then aligned these motion points to the depth frame sequences. Secondly, using a Histogram of orientation gradient descriptor for computing the features vector around these points from both RGB and depth channels, then combined these feature values in one RGBD feature vector. Thirdly, computing Hu-Moment shape features from RGBD frames; fourthly, combining the HOG features with Hu-moments features in one feature vector for each video action. Finally, the k-means clustering and the multi-class K-Nearest Neighbor is used for the classification task. This system is invariant to scale, rotation, translation, and illumination. All tested, are utilized on a dataset that is available to the public and used often in the community. By using this new feature combination method improves performance on actions with low movement and reach recognition rates superior to other publications of the dataset.

Keywords: RGBD videos; feature extraction; K-means clustering; KNN (K-Nearest Neighbor)

Rawya Al-Akam and Dietrich Paulus, “RGBD Human Action Recognition using Multi-Features Combination and K-Nearest Neighbors Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 8(10), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081050

@article{Al-Akam2017,
title = {RGBD Human Action Recognition using Multi-Features Combination and K-Nearest Neighbors Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081050},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081050},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {10},
author = {Rawya Al-Akam and Dietrich Paulus}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org