The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081009
PDF

The Informative Vector Selection in Active Learning using Divisive Analysis

Author 1: Zareen Sharf
Author 2: Maryam Razzak

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 10, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Traditional supervised machine learning techniques require training on large volumes of data to acquire efficiency and accuracy. As opposed to traditional systems Active Learning systems minimizes the size of training data significantly because the selection of the data is done based on a strong mathematical model. This helps in achieving the same accuracy levels of the results as baseline techniques but with a considerably small training dataset. In this paper, the active learning approach has been implemented with a modification into the traditional system of active learning with version space algorithm. The version space concept is replaced with the divisive analysis (DIANA) algorithm and the core idea is to pre-cluster the instances before distributing them into training and testing data. The results obtained by our system have justified our reasoning that pre-clustering instead of the traditional version space algorithm can bring a good impact on the accuracy of the overall system’s classification. Two types of data have been tested, the binary class and multi-class. The proposed system worked well on the multi-class but in case of binary, the version space algorithm results were more accurate.

Keywords: Active learning; machine learning; pre-clustering; semi-supervised learning

Zareen Sharf and Maryam Razzak, “The Informative Vector Selection in Active Learning using Divisive Analysis” International Journal of Advanced Computer Science and Applications(IJACSA), 8(10), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081009

@article{Sharf2017,
title = {The Informative Vector Selection in Active Learning using Divisive Analysis},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081009},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081009},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {10},
author = {Zareen Sharf and Maryam Razzak}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org