The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081130
PDF

Machine Learning for Bioelectromagnetics: Prediction Model using Data of Weak Radiofrequency Radiation Effect on Plants

Author 1: Malka N. Halgamuge

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 11, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Plant sensitivity and its bio-effects on non-thermal weak radio-frequency electromagnetic fields (RF-EMF) identifying key parameters that affect plant sensitivity that can change/unchange by using big data analytics and machine learning concepts are quite significant. Despite its benefits, there is no single study that adequately covers machine learning concept in Bioelectromagnetics domain yet. This study aims to demonstrate the usefulness of Machine Learning algorithms for predicting the possible damages of electromagnetic radiations from mobile phones and base station on plants and consequently, develops a prediction model of plant sensitivity to RF-EMF. We used rawdata of plant exposure from our previous review study (extracted data from 45 peer-reviewed scientific publications published between 1996-2016 with 169 experimental case studies carried out in the scientific literature) that predicts the potential effects of RF-EMF on plants. We also used values of six different attributes or parameters for this study: frequency, specific absorption rate (SAR), power flux density, electric field strength, exposure time and plant type (species). The results demonstrated that the adaptation of machine learning algorithms (classification and clustering) to predict 1) what conditions will RF-EMF exposure to a plant of a given species may not produce an effect; 2) what frequency and electric field strength values are safer; and 3) which plant species are affected by RF-EMF. Moreover, this paper also illustrates the development of optimal attribute selection protocol to identify key parameters that are highly significant when designing the in-vitro practical standardized experimental protocols. Our analysis also illustrates that Random Forest classification algorithm outperforms with highest classification accuracy by 95.26% (0.084 error) with only 4% of fluctuation among algorithm measured. The results clearly show that using K-Means clustering algorithm, demonstrated that the Pea, Mungbean and Duckweeds plants are more sensitive to RF-EMF (p <= 0.0001). The sample size of reported 169 experimental case studies, perhaps low significant in a statistical sense, nonetheless, this analysis still provides useful insight of exploiting Machine Learning in Bioelectromagnetics domain. As a direct outcome of this research, more efficient RF-EMF exposure prediction tools can be developed to improve the quality of epidemiological studies and the long-term experiments using whole organisms.

Keywords: Machine learning; plants; prediction; mobile phones; base station; radiofrequency electromagnetic fields; RFEMF; plant sensitivity; classification; clustering

Malka N. Halgamuge, “Machine Learning for Bioelectromagnetics: Prediction Model using Data of Weak Radiofrequency Radiation Effect on Plants” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081130

@article{Halgamuge2017,
title = {Machine Learning for Bioelectromagnetics: Prediction Model using Data of Weak Radiofrequency Radiation Effect on Plants},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081130},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081130},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {11},
author = {Malka N. Halgamuge}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2025

28-29 April 2025

  • Berlin, Germany

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org