The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081140
PDF

Investigate the use of Anchor-Text and of Query-Document Similarity Scores to Predict the Performance of Search Engine

Author 1: Abdulmohsen Almalawi
Author 2: Rayed AlGhamdi
Author 3: Adel Fahad

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 11, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Query difficulty prediction aims to estimate, in advance, whether the answers returned by search engines in response to a query are likely to be useful. This paper proposes new predictors based upon the similarity between the query and answer documents, as calculated by the three different models. It examined the use of anchor text-based document surrogates, and how their similarity to queries can be used to estimate query difficulty. It evaluated the performance of the predictors based on 1) the correlation between the average precision (AP), 2) the precision at 10 (P@10) of the full text retrieved results, 3) a similarity score of anchor text, and 4) a similarity score of full-text, using the WT10g data collection of web data. Experimental evaluation of our research shows that five of our proposed predictors demonstrate reliable and consistent performance across a variety of different retrieval models.

Keywords: Data mining; information retrieval; web search; query prediction

Abdulmohsen Almalawi, Rayed AlGhamdi and Adel Fahad, “Investigate the use of Anchor-Text and of Query-Document Similarity Scores to Predict the Performance of Search Engine” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081140

@article{Almalawi2017,
title = {Investigate the use of Anchor-Text and of Query-Document Similarity Scores to Predict the Performance of Search Engine},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081140},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081140},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {11},
author = {Abdulmohsen Almalawi and Rayed AlGhamdi and Adel Fahad}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org