The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081161
PDF

Adaptive Multilayered Particle Swarm Optimized Neural Network (AMPSONN) for Pipeline Corrosion Prediction

Author 1: Kien Ee Lee
Author 2: Izzatdin bin Abdul Aziz
Author 3: Jafreezal bin Jaafar

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 11, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Artificial Neural Network (ANN) design has long been a complex problem because its performance depends heavily on the network topology and algorithm to train the set of synaptic weights. Particle Swarm Optimization (PSO) has been the favored optimization algorithm to complement ANN, but a thorough literature study has shown that there are gaps with current approaches which integrate PSO with ANN, including the optimization of network topology and the unreliable weight training process. These gaps have caused inferior effect on critical Artificial Intelligence (AI) applications and systems, particularly when predicting plant machinery and piping failure due to corrosion. The problem of corrosion prediction in the oil and gas domain remains unanswered due to the lack of a flexible prediction method which targets specific damage mechanisms that caused corrosion. This paper proposes a hybrid prediction method known as the Adaptive Multilayered Particle Swarm Optimized Neural Network (AMPSONN), which integrates several layers of PSO to optimize different parameters of the ANN. The multilayered PSO enables the method to optimize the network topology and train the set of synaptic weights at the same time using a hierarchical optimization approach. Through detailed discussion and literature study, the damage mechanism focused in this research is the CO2 corrosion and the dataset for this research is obtained from the NORSOK empirical model. The proposed AMPSONN method is tested against BP, MPSO and PSOBP methods on an industrial corrosion dataset for different test conditions. The results showed that AMPSONN performs best on all three problems, exhibiting high classification accuracies and time efficiency.

Keywords: Corrosion; damage mechanism; prediction method; artificial neural network; particle swarm optimization

Kien Ee Lee, Izzatdin bin Abdul Aziz and Jafreezal bin Jaafar, “Adaptive Multilayered Particle Swarm Optimized Neural Network (AMPSONN) for Pipeline Corrosion Prediction” International Journal of Advanced Computer Science and Applications(IJACSA), 8(11), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081161

@article{Lee2017,
title = {Adaptive Multilayered Particle Swarm Optimized Neural Network (AMPSONN) for Pipeline Corrosion Prediction},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081161},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081161},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {11},
author = {Kien Ee Lee and Izzatdin bin Abdul Aziz and Jafreezal bin Jaafar}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

16-17 April 2026

  • Berlin, Germany

Healthcare Conference 2026

21-22 May 2025

  • Amsterdam, The Netherlands

Computing Conference 2025

19-20 June 2025

  • London, United Kingdom

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2025

6-7 November 2025

  • Munich, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org