The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081215
PDF

Machine Learning based Predictive Model for Screening Mycobacterium Tuberculosis Transcriptional Regulatory Protein Inhibitors from High-Throughput Screening Dataset

Author 1: Syed Asif Hassan
Author 2: Tabrej Khan

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 12, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: In view of the essential role played by dosRS in the survival of Mycobacterium in the infected granuloma cells, dosRS transcriptional regulatory proteins were considered as a validated target for high throughput screening (HTS). However, the cost and time factor involved in screening large compound libraries are an important hurdle in identifying lead compounds. Therefore, the use of computational machine learning techniques to build a predictive model for screening putative drug-like molecule has gained significance. In this regard, a target-based predictive model using machine learning approaches was built to develop fast and efficient virtual screening procedures to screen anti-dosRS molecules. In the present study, we have used various structural and physiochemical attributes of compounds from HTS dataset to train and build a chemoinformatics predictive model based on four state-of-art supervised classifiers (Random forest, SMO, J48, and Naïve Bayes). The trained model was applied to test dataset for validating the robustness, accuracy, and sensitivity of the predictive model in screening active anti-dosRS molecules. The Cost-Sensitive Classifier (CSC) with Random Forest (RF) algorithm based predictive model showed a high sensitivity (100%) and specificity (83.13%) to identify active and inactive molecules, respectively from assay dataset (ID: 1159583). CSC-RF proved to more robust and efficient in classifying active molecule from an imbalanced dataset with highest Balancing Classification Rate (BCR) (91.57%) and maximum Area under the Curve (AUC) value (0.999).

Keywords: Mycobacterium; dosRS-transcriptional regulatory proteins; High Throughput Screening (HTS); virtual screening; machine learning algorithms; classification; predictive chemoinformatics model

Syed Asif Hassan and Tabrej Khan, “Machine Learning based Predictive Model for Screening Mycobacterium Tuberculosis Transcriptional Regulatory Protein Inhibitors from High-Throughput Screening Dataset” International Journal of Advanced Computer Science and Applications(IJACSA), 8(12), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081215

@article{Hassan2017,
title = {Machine Learning based Predictive Model for Screening Mycobacterium Tuberculosis Transcriptional Regulatory Protein Inhibitors from High-Throughput Screening Dataset},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081215},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081215},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {12},
author = {Syed Asif Hassan and Tabrej Khan}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org