The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081238
PDF

Comparative Analysis of ANN Techniques for Predicting Channel Frequencies in Cognitive Radio

Author 1: Imran Khan
Author 2: Shaukat Wasi
Author 3: Adnan Waqar
Author 4: Saima Khadim

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 12, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Demand of larger bandwidth increases the spectrum scarcity problem. By using the concepts of Cognitive radio we can achieve an efficient spectrum utilization. The cognitive radio allows the unlicensed user to share the licensed user band. To sense the accessibility of vacant channel and allocation of licensed user band is provided by Machine learning techniques because this decision need to be very fast and accurate. It is based on certain factors (such as Power, Bandwidth, antenna parameters, etc.). In this paper, we used neural network to propose this decision of resource allocation more accurately by providing bandwidth, power, antenna gain, azimuth, angle of elevation and location as a supplements factors to increase the predicting accuracy of Available channel frequencies for secondary user in particular bands. The comparative analysis is done between artificial neural network techniques to determine the maximum decision accuracy in order to design a suitable neural network structure and the system to make fast prediction for available channels. The dataset is divided in to cellular 850 MHZ and Advanced wireless service 1900/2100 MHZ bands. In both bands, Feed Forward networks performs better as compared to Elman and Radial basis network for predicting the best available channel to accommodate the secondary user. It will considerably increase overall QoS and decrease interference, hence making Cognitive radio system reliable.

Keywords: Cognitive radio; machine learning; artificial neural network; frequencies band; feed forward neural network; Elman; Radial basis

Imran Khan, Shaukat Wasi, Adnan Waqar and Saima Khadim, “Comparative Analysis of ANN Techniques for Predicting Channel Frequencies in Cognitive Radio” International Journal of Advanced Computer Science and Applications(IJACSA), 8(12), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081238

@article{Khan2017,
title = {Comparative Analysis of ANN Techniques for Predicting Channel Frequencies in Cognitive Radio},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081238},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081238},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {12},
author = {Imran Khan and Shaukat Wasi and Adnan Waqar and Saima Khadim}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org