The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081255
PDF

Comparative Performance Analysis for Generalized Additive and Generalized Linear Modeling in Epidemiology

Author 1: Talmoudi Khouloud
Author 2: Bellali Hedia
Author 3: Ben-Alaya Nissaf
Author 4: Saez Marc
Author 5: Malouche Dhafer
Author 6: Chahed Mohamed Kouni

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 12, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Most environmental-epidemiological researches emphasize modeling as the causal link of different events (e.g., hospital admission, death, disease emergency). There has been a particular concern in the use of the Generalized Linear Models (GLMs) in the field of epidemiology. However, recent studies in this field highlighted the use of non-parametric techniques, especially the Generalized Additive Models (GAMs). The aim of this work is to compare performance of both methods in the field of epidemiology. Comparison is done in terms of sharpening the relation between the predictors and the response variable as well as in predicting outbreaks. The most suitable method is then adopted to elucidate the impact of bioclimatic factors on the emergence of the zoonotic cutaneous leishmaniasis (ZCL) disease in Central Tunisia. Monthly epidemiologic and bioclimatic data from July 2009 to June 2016 are used in this study. Akaike information criterion, R-squared and F-statistic are used to compare model performance, while the root mean square error is used for checking predictive accuracy for both models. Our results show the potential of GAM model to provide a better assessment of the nonlinear relations and to give a high predictive accuracy compared to GLMs. The results also stress the inaccurate estimation of risk factors when linear trends are used to model nonlinear structured data.

Keywords: Generalized linear model; generalized additive model; zoonotic cutaneous leishmaniasis; Central Tunisia

Talmoudi Khouloud, Bellali Hedia, Ben-Alaya Nissaf, Saez Marc, Malouche Dhafer and Chahed Mohamed Kouni, “Comparative Performance Analysis for Generalized Additive and Generalized Linear Modeling in Epidemiology” International Journal of Advanced Computer Science and Applications(IJACSA), 8(12), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081255

@article{Khouloud2017,
title = {Comparative Performance Analysis for Generalized Additive and Generalized Linear Modeling in Epidemiology},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081255},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081255},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {12},
author = {Talmoudi Khouloud and Bellali Hedia and Ben-Alaya Nissaf and Saez Marc and Malouche Dhafer and Chahed Mohamed Kouni}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org