The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.081259
PDF

Multivariate Statistical Analysis on Anomaly P2P Botnets Detection

Author 1: Raihana Syahirah Binti Abdullah
Author 2: Faizal M. A.
Author 3: Zul Azri Muhamad Noh

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 12, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Botnets population is rapidly growing and they become a huge threat on the Internet. Botnets has been declared as Advanced Malware (AM) and Advanced Persistent Threat (APT) listed attacks which is able to manipulate advanced technology where the intricacy of threats need for continuous detection and protection. These attacks will be almost exclusive for financial gain. P2P botnets act as bots that use P2P technology to accomplish certain tasks. The evolution of P2P technology had generated P2P botnets to become more resilient and robust than centralized botnets. This poses a big challenge on detection and defences. In order to detect these botnets, a complete flow analysis is necessary. In this paper, we proposed anomaly detection through chi-square multivariate statistical analysis which currently focuses on time duration and time slot. This particular time is considered to identify the existence of botserver. We foiled both of host level and network level to make coordination within a P2P botnets and the malicious behaviour each bot exhibits for making detection decisions. The statistical approach result show a high detection accuracy and low false positive that make it as one of the promising approach to reveal botserver.

Keywords: P2P botnets; anomaly-based; chi-square; multivariate; statistical-based

Raihana Syahirah Binti Abdullah, Faizal M. A. and Zul Azri Muhamad Noh, “Multivariate Statistical Analysis on Anomaly P2P Botnets Detection” International Journal of Advanced Computer Science and Applications(IJACSA), 8(12), 2017. http://dx.doi.org/10.14569/IJACSA.2017.081259

@article{Abdullah2017,
title = {Multivariate Statistical Analysis on Anomaly P2P Botnets Detection},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081259},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081259},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {12},
author = {Raihana Syahirah Binti Abdullah and Faizal M. A. and Zul Azri Muhamad Noh}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org