The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • GIDP 2026
  • ICONS_BA 2025

Computer Vision Conference (CVC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • RSS Feed

DOI: 10.14569/IJACSA.2017.081260
PDF

Image noise Detection and Removal based on Enhanced GridLOF Algorithm

Author 1: Ahmed M. Elmogy
Author 2: Eslam Mahmoud
Author 3: Fahd A. Turki

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 12, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Image noise removal is a major task in image processing where noise can harness any information inferred from the image especially when the noise level is high. Although there exists many outlier detection approaches used for this task, more enhancements are needed to achieve better performance specifically in terms of time. This paper proposes a new algorithm to detect and remove noise from images depending on an enhanced version of GridLOF algorithm. The enhancement aims to reduce the time and complexity of the algorithm while attaining comparable accuracy. Simulation results on a set of different images proved that proposed algorithm achieves the standard accuracy.

Keywords: Outlier detection; image noise removal; LOF; GridLOF

Ahmed M. Elmogy, Eslam Mahmoud and Fahd A. Turki. “Image noise Detection and Removal based on Enhanced GridLOF Algorithm”. International Journal of Advanced Computer Science and Applications (IJACSA) 8.12 (2017). http://dx.doi.org/10.14569/IJACSA.2017.081260

@article{Elmogy2017,
title = {Image noise Detection and Removal based on Enhanced GridLOF Algorithm},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.081260},
url = {http://dx.doi.org/10.14569/IJACSA.2017.081260},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {12},
author = {Ahmed M. Elmogy and Eslam Mahmoud and Fahd A. Turki}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

Computer Vision Conference (CVC) 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

Artificial Intelligence Conference 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computer Vision Conference
  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

The Science and Information (SAI) Organization Limited is a company registered in England and Wales under Company Number 8933205.