The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

High Performance of Hash-based Signature Schemes

Author 1: Ana Karina D. S. de Oliveira
Author 2: Julio L´opez
Author 3: Roberto Cabral

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080358

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 3, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: Hash-based signature schemes, whose security is based on properties of the underlying hash functions, are promising candidates to be quantum-safe digital signatures schemes. In this work, we present a software implementation of two recent standard proposals for hash-based signature schemes, Leighton and Micali Signature (LMS) scheme and Extended Merkle Signature Scheme (XMSS), using a set of AVX2 instructions on Intel processors. The implementation uses several optimization techniques for speeding up the underlying hash functions SHA2 or SHA3, and other building block functions which lead to high performance for signature operations on both schemes. On an Intel Skylake processor, using a tree of height 60 with 12 layers, the signing operation for XMSS takes 3,841,199 cycles (1,043 signatures per second) at 128-bit security level (against quantum attacks). For an equivalent security, the LMS system computes a signature in 1,307,376 cycles (3,065 signatures per second). We also provide the first comparative performance results for signing and verification of both schemes using different parameters. The results of our implementation indicate that both schemes LMS and XMSS can achieve high performance using vector instructions on modern processors.

Keywords: post-quantum cryptography; digital signature; Merkle signature; LMS; XMSS

Ana Karina D. S. de Oliveira, Julio L´opez and Roberto Cabral, “High Performance of Hash-based Signature Schemes” International Journal of Advanced Computer Science and Applications(IJACSA), 8(3), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080358

@article{Oliveira2017,
title = {High Performance of Hash-based Signature Schemes},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080358},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080358},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {3},
author = {Ana Karina D. S. de Oliveira and Julio L´opez and Roberto Cabral}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org