The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Digital Archiving Policy
  • Promote your Publication
  • Metadata Harvesting (OAI2)

IJACSA

  • About the Journal
  • Call for Papers
  • Editorial Board
  • Author Guidelines
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Fees/ APC
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors
  • SUSAI-EE 2025
  • ICONS-BA 2025
  • IoT-BLOCK 2025

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Editorial Board
  • Guidelines
  • Submit
  • Current Issue
  • Archives
  • Indexing
  • Fees
  • Reviewers
  • Subscribe

DOI: 10.14569/IJACSA.2017.080411
PDF

Using Weighted Bipartite Graph for Android Malware Classification

Author 1: Altyeb Altaher

International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 4, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The complexity and the number of mobile malware are increasing continually as the usage of smartphones continue to rise. The popularity of Android has increased the number of malware that target Android-based smartphones. Developing efficient and effective approaches for Android malware classification is emerging as a new challenge. This paper introduces an effective Android malware classifier based on the weighted bipartite graph. This classifier includes two phases: in the first phase, the permissions and API Calls used in the Android app are utilized to construct the weighted bipartite graph; the feature importance scores are integrated as weights in the bipartite graph to improve the discrimination between malware and goodware apps, by incorporating extra meaningful information into the graph structure. The second phase applied multiple classifiers to categorise the Android application as a malware or goodware. The results using an Android malware dataset consists of different malware families, showing the effectiveness of our approach toward Android malware classification.

Keywords: Android malware; Bipartite graph; Classification algorithms; machine learning

Altyeb Altaher, “Using Weighted Bipartite Graph for Android Malware Classification” International Journal of Advanced Computer Science and Applications(IJACSA), 8(4), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080411

@article{Altaher2017,
title = {Using Weighted Bipartite Graph for Android Malware Classification},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080411},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080411},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {4},
author = {Altyeb Altaher}
}



Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

IJACSA

Upcoming Conferences

IntelliSys 2025

28-29 August 2025

  • Amsterdam, The Netherlands

Future Technologies Conference 2025

6-7 November 2025

  • Munich, Germany

Healthcare Conference 2026

21-22 May 2026

  • Amsterdam, The Netherlands

Computing Conference 2026

9-10 July 2026

  • London, United Kingdom

IntelliSys 2026

3-4 September 2026

  • Amsterdam, The Netherlands

Computer Vision Conference 2026

15-16 October 2026

  • Berlin, Germany
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. All rights reserved. Registered in England and Wales. Company Number 8933205. thesai.org