The Science and Information (SAI) Organization
  • Home
  • About Us
  • Journals
  • Conferences
  • Contact Us

Publication Links

  • IJACSA
  • Author Guidelines
  • Publication Policies
  • Metadata Harvesting (OAI2)
  • Digital Archiving Policy
  • Promote your Publication

IJACSA

  • About the Journal
  • Call for Papers
  • Author Guidelines
  • Fees/ APC
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Apply as a Reviewer

IJARAI

  • About the Journal
  • Archives
  • Indexing & Archiving

Special Issues

  • Home
  • Archives
  • Proposals
  • Guest Editors

Future of Information and Communication Conference (FICC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Computing Conference

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Intelligent Systems Conference (IntelliSys)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact

Future Technologies Conference (FTC)

  • Home
  • Call for Papers
  • Submit your Paper/Poster
  • Register
  • Venue
  • Contact
  • Home
  • Call for Papers
  • Guidelines
  • Fees
  • Submit your Paper
  • Current Issue
  • Archives
  • Indexing
  • Editors
  • Reviewers
  • Subscribe

Article Details

Copyright Statement: This is an open access article licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, even commercially as long as the original work is properly cited.

Automatic Recognition of Medicinal Plants using Machine Learning Techniques

Author 1: Adams Begue
Author 2: Venitha Kowlessur
Author 3: Upasana Singh
Author 4: Fawzi Mahomoodally
Author 5: Sameerchand Pudaruth

Download PDF

Digital Object Identifier (DOI) : 10.14569/IJACSA.2017.080424

Article Published in International Journal of Advanced Computer Science and Applications(IJACSA), Volume 8 Issue 4, 2017.

  • Abstract and Keywords
  • How to Cite this Article
  • {} BibTeX Source

Abstract: The proper identification of plant species has major benefits for a wide range of stakeholders ranging from forestry services, botanists, taxonomists, physicians, pharmaceutical laboratories, organisations fighting for endangered species, government and the public at large. Consequently, this has fueled an interest in developing automated systems for the recognition of different plant species. A fully automated method for the recognition of medicinal plants using computer vision and machine learning techniques has been presented. Leaves from 24 different medicinal plant species were collected and photographed using a smartphone in a laboratory setting. A large number of features were extracted from each leaf such as its length, width, perimeter, area, number of vertices, colour, perimeter and area of hull. Several derived features were then computed from these attributes. The best results were obtained from a random forest classifier using a 10-fold cross-validation technique. With an accuracy of 90.1%, the random forest classifier performed better than other machine learning approaches such as the k-nearest neighbour, naïve Bayes, support vector machines and neural networks. These results are very encouraging and future work will be geared towards using a larger dataset and high-performance computing facilities to investigate the performance of deep learning neural networks to identify medicinal plants used in primary health care. To the best of our knowledge, this work is the first of its kind to have created a unique image dataset for medicinal plants that are available on the island of Mauritius. It is anticipated that a web-based or mobile computer system for the automatic recognition of medicinal plants will help the local population to improve their knowledge on medicinal plants, help taxonomists to develop more efficient species identification techniques and will also contribute significantly in the protection of endangered species.

Keywords: leaf recognition; medicinal plants; random forest; Mauritius

Adams Begue, Venitha Kowlessur, Upasana Singh, Fawzi Mahomoodally and Sameerchand Pudaruth, “Automatic Recognition of Medicinal Plants using Machine Learning Techniques” International Journal of Advanced Computer Science and Applications(IJACSA), 8(4), 2017. http://dx.doi.org/10.14569/IJACSA.2017.080424

@article{Begue2017,
title = {Automatic Recognition of Medicinal Plants using Machine Learning Techniques},
journal = {International Journal of Advanced Computer Science and Applications},
doi = {10.14569/IJACSA.2017.080424},
url = {http://dx.doi.org/10.14569/IJACSA.2017.080424},
year = {2017},
publisher = {The Science and Information Organization},
volume = {8},
number = {4},
author = {Adams Begue and Venitha Kowlessur and Upasana Singh and Fawzi Mahomoodally and Sameerchand Pudaruth}
}


IJACSA

Upcoming Conferences

Future of Information and Communication Conference (FICC) 2023

2-3 March 2023

  • Virtual

Computing Conference 2023

22-23 June 2023

  • London, United Kingdom

IntelliSys 2023

7-8 September 2023

  • Amsterdam, The Netherlands

Future Technologies Conference (FTC) 2023

2-3 November 2023

  • San Francisco, United States
The Science and Information (SAI) Organization
BACK TO TOP

Computer Science Journal

  • About the Journal
  • Call for Papers
  • Submit Paper
  • Indexing

Our Conferences

  • Computing Conference
  • Intelligent Systems Conference
  • Future Technologies Conference
  • Communication Conference

Help & Support

  • Contact Us
  • About Us
  • Terms and Conditions
  • Privacy Policy

© The Science and Information (SAI) Organization Limited. Registered in England and Wales. Company Number 8933205. All rights reserved. thesai.org